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NASA TT F-14,658

ON THE APPLICATION OF THE SPLITTING METHOD FOR NUMERICAL
CALCULATION OF HEAT-CONDUCTING GAS FLOWS IN

CURVILINEAR COORDINATES

N. N. Yanenko, V. D. Frolov, V. Ye. Neuvazhayev1

An algorithm of the numerical calculation for the problem of axially /74*

symmetric motion with consideration of thermal conductivity in heterogeneous

media, based on the application of the splitting (fractional step) method

[1, 4, 5], is presented in this article. The solution of the two-dimensional|

problem is reduced to a series of unidimensional calculations.

One of the most important aspects of two-dimensional problems is the

choice of the method of describing motion. The Euler and Lagrange methods are

known extensively. In the Euler method, the distribution of parameters of the

state of a medium in motion is determined for each given point in space. This

method is convenient for numerical calculations in the presence of fixed

boundaries and absence of medium interfaces, and permits large deformations of

matter. In the Lagrange method, motion and state are determined for each fixed

particle of matter. In numerical calculations, this method is convenient in

the presence of interfaces, but it does not tolerate large displacements of

particles relative to each other, for example sliding of layers.

Combined methods have appeared recently, incorporating the advantages of

both concepts for numerical calculations. Thus, a mobile Euler network is used

in '[2]1. V. F. D'yachenko, as the authors understand, used in calculations

Euler-Lagrangian coordinates, in which the interfaces of the media are

Lagrangian lines.

Also used in the cited work is a combined Euler-Lagrange method of des-

cribing motion, when one set of coordinate lines, coinciding with the inter-

faces, is Lagrangian and the other is Eulerian. It is then possible to trace

the interfaces and to calculate the flow of matter in the layers. In view of

the fact that the shape of interfaces may vary in time, they are connected

*Numbers in the margin indicate pagination in the foreign text.

1Computer Center, Siberian Department, Academy of Sciences, U.S.S.R., Norosibirsk.

1



to a new curvilinear coordinate system at each step of the calculation in

order to maintain the boundaries as coordinate lines.

Implicit difference methods, permitting calculation with a sufficiently

large step in time, are used in this work.

In § 1 the equations describing the motion of a continuum are written in

arbitrary curvilinear coordinates. This makes it possible to use an arbitrary

metric, and on the boundaries coinciding with the Lagrangian set of coordinate

lines, to maintain the corresponding contravariant component of the velocity /75

vector continuously, whereupon it is not.lespecially necessary to separate the|

interfaces during the calculation.

Further, in § 2 these equations are split into two systems, in each of

which are considered only derivatives of one direction. In the system

containing the derivatives on Ithe coordinate corresponding to the interfaces,

- we convert to: a Lagrangian mass coordinate. For each of the systems obtained in

§ 3 we write implicit difference systems, which serve as a foundation for

the successive dispersion method [5]. We first solve the system that

describes motion in the Euler network, and then we use the values obtained and

calculate the system in Lagrangian coordinates, i.e., the solution of the

problem is reduced to calculation of M one-dimensional problems in the Eulerian

network and K one-dimensional problems in the Lagrangian network, where M and K

are the numbers of counting intervals on each coordinate set.

Some results of calculations, done by the program that executes the

described method in the computer, are presented in § 4. The program was

written by V. M. Gribov, V. I. Legon'kov and L. N. Khokhryakova. A. I. Zuyev

also took part in the development of the method. The authors express their

gratitude to all coworkers who assisted them in this work.

§ 1. Basic Equations. The motion of heat-conducting gas is described by

the following equations:

dp + dv = 0 d' + grad p =°O,
-' t +'d=_vv O, ..d

P 
__-- idtv (gradT).:t. dt pI
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Here p = p(p, T).is pressure, - = c(p, T) is internal energy, p is density,

T is temperature, v is the velocity vector, K = K(p, T) is the coefficient of

thermal conductivity.

Let Yk (k = 1, 2, 3) be Cartesian orthogonal coordinates, xi (i = 1, 2, 3)

be arbitrary curvilinear coordinates. We will introduce the definitions:

Y.__; 'Y ' 
g 2 1g 922 .; (1.2).':. 'gik ox' .:

'/-gl ge: g33

d 'algebraic component
g

Ad:-x V = +x i Xs

We will choose the curvilinear coordinate system at each moment of time t

(so that the lines x1 = r = const coincide with the interfaces of the

layers, and also so that x 2 = 0 and x3 = X, where 0 and 4 are the polar

distance and length, respectively. Let R = R(r, 0) be the distance

between the given point with coordinates r, 8 and the origin of the coordinates. /
Then Cartesian coordinates Yk and curvilinear coordinates xi will be / /76

connected by the relations

yl =R sin O cos p;

y2=Rsinsin ; (1.3)

y3 =Rcos 0.

Expressions (1.2), with consideration of (1.3), acquire the form

gl = R2; gl 2 = RrRe; gl3,= O,

, = gi2; .g2 2 =R R; g 2 = 0; (1.4)

g 8, = 0; g 32 = ; g 3 3 = R2 sIn 2 0;

:' -gk= R sin:O;
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r' ,Rrr, rl RR,.-R R 1 RR88-2R_ 2
11- X ' 12 = RRo .R22Kr RR.,

. ,.. · , . .. . .. . . .2.:

--r,''o; r,2 = 1R 22 =

Here the subscripts r and 0 denote differentiation in terms of r and e6,

respectively.

If we denote

. u=v.; V=V2 ;

- ' '+ + 0
Di t Or dr (1.5)

and apply transform (1.3) to equation system (1.1), we obtain

Dp +·p ( ov/ ' ±. )g .
. O r _ 6 ,1'.

.t ~+ (1.6
D u + ug + 2r 1 _ g d r 

D v 
+

'

2r; u 2 2+ r 22= 9 2 d . 9 
Dt 2 2 

RRR R2r ±Or 
.. ~~~~~ ~(1.6

· .

Pi 9 X ~/77

The problem is stated as follows: determine the solution of system (1.6)

in some region D (see the figure), bounded by the axis of symmetry and some

curve

~; - g'" ~ + g"-TF ·: "~~~~~~~~~~~~~~~~~~~~. . . .~~~~~or

4



r = r._ 0 --..
-B' *fi.)~~ v >. <(1.7)

if at moment t = to, u(r, e, to), v(r, 0, to), p(r, 0, to), T(r, 0, to) are

known and on boundary (1.7), for example, the following conditions are

prescribed:

-5-nn~Op= p0, t); x =f (T),

where a- denotes differentiation on the normal to curve (1.7). We will note

that the flow in (1.8) can be written in coordinates r and 0:

d p dr =da_ 0; v =O.
a0 de d|

§ 2. Splitting of system (1.6). We separate system (1.6) into two, if

possible considering in each on onf them derivatives only in terms of one of

the directions r and 0:

i a a eu _____RO op_
2 dt p R +Iv'0

av O 2PId O 

I d v d + V 2 V2 + 

(2.1)

a _ V a, _+p P _ / g = 0.
2 at T 6 9 Ov -
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I fi O p a v 1 aT 
+__ v _ _ _ - -=X

2 O t 0 p 2 drdO0 P I 9 P g 

Iv' g - T 2 T \
R: 2 R. RO a

± 1Ou U~ d rh L RE + RE 0;
2 t Or pR2 R Or

_Vdo_ R0UV RO |=0; (2.2)
2 Ot Or pN2 R, Or

I 1 -- +1 d a ± P d. gu2 ++2U HV+-P =0;
2 d U _ f d+ 

+ v a-_ + d
2 Ot Or O g Lr

1 0d. I/ g [IZ ±+ R-) T-r I?

0} / g dr R, Rr 

We substitute

U=u R,, H ReR (2.3)

and convert in system (2.2) to the Lagrangian mass coordinatel

dq = p R R , dr.

Then we have

+ v +2 + +21 + v0;+
2 O 00 R pR2 00

(2.4)
OI i o .. 0U +v IJH.L+( o/p _ 0;

2d~~~ Of 00u~~ \io- _ I pR oo

, _ + p + 4 p_ V-) =o;
2 Ot 00 Vg do

1 0, Oe p 0 1r\

2 Of 00 . d0

_ + P., _r0) (2.5)
00 R:R, Or + 0 0
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-t q R dR U v + R2 (I + H) = 0; (2.5)
2 Ot R q

I
2 Ot 2 Ot

/79

- 0;a _ OR" U
2 d t dq

+ ± OR!U -x (1 + H=), I.l = - -_ + R P2( H - R 
*-at Oq [q Jq R Oo

g 3. Calculation equations. The three-dimensional network is constructed

with the aid of rays Ok+½ const, constructed from some center, and lines

r = const, where the latter are selected such that the boundaries arem
coordinate lines (see the figure). R, U, v, p, T are defined at the following

points:

R(rm, Ok + 1/2) = Rm, + 12; U (r, k + 12) U= rn, k 112;

(rm + 1/2, V0 ) = 1(2, k;

p (rm + 1/2, Ok + i2) -- ,Pm 1. k + 112, T (r +. ,2, 0 k -1!2) = T j2, + 1,2.

If these values must be known at other points, they are determined by

interpolation.

The time stage is calculated in two stages: in the first stage (2.1) is

approximated by some difference system on interval [hT, (n + ½)T] and the
values U, v, p, T are determined; in the second stage of the system (2.2) is

approximated on the interval [(h + ½)T, h + 1] by system (5) and the final
n+1values of U, v, p, T are determined for t = t = (h + 1)r.

The difference equations are presented below. System (2.1) is written

as follows:
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= -2I ; A0,= Oh + 12 - -k - 12; Ak9 - 112 = O, - k--1;

pn+ 1/2 s + 1/2 pn2 -+ n + 12) I t (pn + 112 - pn + 1/2
k + Ir12 + +( tl 

+

.2 k- 1/2 +l2 11 +I
A eO/A, + + IAS*L+

CPj + 112
( - v ) -P ,+ 1,2;

V gk + 112 0 + 1/2

gn + 12 IC+ s (I Vn+ 2 _n + Mn ' + 0 k ( vn + -v )+_____V' IL,. - VA -n+ 1(2 n++ k/2+,_a ,k +

~

12_A

22 ~ (l, 'L 4k Pn + 112 - pA 112 v2 ;' + 2 (p R+ (p +2 _ Pk 2
R tl (P R')* ^ 0k~~~~~~~~~~~I

V + 112 = 3
3

(R + 1)3 - (Rm)
r.+ l - r

sin Ok + 1/2;

..Hn R+- Rk 2 ;
.+ 2 Rh + R A + 12 12

Pk + 1/2 + P (Pi 12 TV 112) + C n 1/2 - + 1 2),

kif AV +i !2 _ s n +1/2 < I;if2Vl + 1 : 2 _ ~ + 1+2f + I < 0;

-n +" 1l: +
a

~;2 P, + ,2 = p (Pk r ,i, r 122 _ V 1+2 0;
Pk ik=0 12 ...- h:i2k

n +i 112 n - 1'2 n + 112 n= 12
0 = V =0; - 1;2 P1;2

pn 1,2 = n L+ 112
K - 112 ' ' + 112-

Here, for simplicity, the subscript m + ½ is omitted everywhere

and m = 0, 1, ... M - 1.

System (3.1) is solved by the dispersion method for vector values and

vn+½, pn+ are determined. Then Tn+½ and Un '± are found:

n + 112 tt+I2 * n+ , 12 n + 12)' ,ek . + 1 (/ + 112 - _k-1- 2 +

A k + 1P2 n + In n + 112+ a ek+ I (Ek ± 312 - tk + 1/2) +

+

. - 1/2 + 12

iPk + m52 s A 1 +2Pa ++ 1112 V e + 11 k+ 112

X (V V2+ 1/2 _ gV. + 1/2) = +x (V x +, , I:k + -R ) + 1 (2, + -

k +-sine + I[- (R,)+, ,+- I,+

8

+
i (3.1l)
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r + /2. n k3+3/2 + 112
+ (R,), + + I*+1~~ o, +

- xi sin O. [- (RP)k ( '+ - r (R,) 
irn + I i I -

Tak + I2- tk 12 1 t.+ 112*Tl-Tt'

Rk' + 1/2 -Rk 1/2

A OA
-; (R,)t = rm+,-r'

;

n.+1 ,n + 112 Am.h + 1/12 2.T_- 1/'1 12 K- I1 = 'v + 112 ,

* Xtl + 112 . .n A a, k + 1IH - n + 1/2 a + 112
",k + ~1/2 an. +Z 112 (+2 -- a

R. - P-.

Li:ra l jdU, ( 312 + 3k + H.. k + I/2 Uvm, k +- 112 Vm, +/2 

-c *.m, k + 112 ( - H - 1)+ 1 (Vm k + 112 +

_& + m kL 0"m. k + 1+ 1

'-n + 112 Zn + i,,2
,m. k + 112 PmF, k+ I - Pm. k

pn + ,112 RaPm, r + 1/2 m, k + 112

/ dHan I

( -0 /m. k+ 112

A 0a + 1/2

a 0k + 112

Using Un+½, vn +½, pn+½, T+½ thus determined, we calculate the second
I.--

stage, in which the following system of differential equations

fU'n"+ + (R d H )n + 1l2ua sl12 [ R (I + 1P) ] Xi V1 C(R ++ ( -m +- =
f-, ~ +. 1 ) n+ 112.

X (p + 1/2 - Pm -1 12 -U in

I

is

1 I I r , I fn + I1. _ 1/ 2 n/n + 11 -
- - [\JL Jr+:-1 - W, U)im pt

n+l ~ n+1/21Pt + I2 rn + 112 n+1)m - J
IPutl + 1r/+m 12+ 12 '1m + 1/2

'*8+ 1 7ni_ n t;( H = n + 1/2 n + 12 

pa+, -=R _Pmil Tnm+,lr2) +n~ -+ . . ._+l-n .+l-)
if Um+l- U M O;

.-nt n+ II ,,rn + h2
Pm + 11 = m + (p a, , , + T ~ 7 12), eCnH Urm + - U, > O;

o + -W O; pm + 112 = p (k + 12, t I+ );

qa + n +1 12 +
m+ If2

n+1/2 ,c n+I/2 |n+2
= *^+1/2 + n +1t 112 | +L 1\2 Pnz+1l2 (RI + R2)fn+l X

vm+ 112 'ro + I

(3.2)

solved:1

/81
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X(2+ -++ (R)n+12 + :

- D; = , ;+(+ Ij R.n + 12 lPa +A I R + 1/2 ) + T2

~/1P ;;T?1r]2 rm+ 1 -,/

(R,-)1/2( A 0h +1(2 ) MI=12

Here, for simplicity, we omit the subscript k + ½, k = 0, 1, ... K - 1.

w3+,12,K = mK + /2, R+ 1/22 A 1+1 -Tm.,+

-k + 1 /22 -(/~2n+ 2-

qn + i~2!/2. K

§ 4. Systematic calculations, verifying the possibility of calculating

~~IJ ~ ~ ~ ~+ 11

HereUn- for dimensional problems,it the solu tions of which were known beforehand, were

used as examples: a) problem of dispersion of a gaseous sphere in a vacuum [6];

b) problem of shock wave converging on center [6].

The calculations were done in a two-dimensional network, for which a point

was selected as the coordinate origin; this point was separated by 1/3 radius

from the true center. The initial radius of the sphere in both cases was

R= 1.

The calculations showed that deviation 6 of the outer boundary from the /82

sphere was:

in problem a:

8 0.08 1.34 2.91
for R = 2.555
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in problem b:

0 0.08 1.81 3.06

a, % -0.51 0.27 1.1

for R = 0.596

The results were compared with calculations done according to programs

that consider spherically symmetric motion. The shape of the shock wave in

problem b was nearly spherical, and deviation from the sphere fell within

those same limits.

It should be pointed out that the resulting asymmetry was caused not by

errors of two-dimensional calculation, but rather by the coarseness of the

calculation network in terms of R, since unidimensional calculations, done

with networks equivalent to two-dimensional networks on rays a = 0.08, 1.34,

and 2.91, yielded differences comparable to deviations from symmetry in the

two-dimensional calculation. Thus, in problem a for AR = 1/22 (e = 2.91)

6 = 3.69, for AR = 1/29 (0 = 1.34) 6 = 0, for AR = 1/45 (8 = 0.08) 6 = 2.59.

The network was uniform with respect to both 8 and R. Twenty points were

taken for 8.
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